From: Sydney Antonov <ska84@protonmail.com> via pgc-forum <pgc-forum@list.nist.gov>

To: pgc-forum@list.nist.gov

Subject: [pgc-forum] s there a proven lower bound on the fraction of codes with systematic forms?
Date: Tuesday, March 22, 2022 08:58:00 PM ET

Is there a meaningful proven lower bound on either the fraction of
Goppa codes with systematic forms (claimed to be approximately 29% by
the Classic McEliece spec) or the fraction of binary matrices which
are invertible (which would imply a close bound for Goppa codes if
McEliece public keys are pseudorandom), for parameters relevant to

Classic McEliece?

Meaningful lower bounds could be probabilistically verified with high
confidence* but this would complicate formal verification of Classic
McEliece's one-way function's security reduction to the original McEliece

cryptosystem.

* Generate 100000 codes. If more than 28000 codes have systematic forms
then with statistical significance less than 1 in a googol at least 25%
of codes have systematic forms. The laptop I'm writing this email on

could perform this computation within hours.

Sydney

You received this message because you are subscribed to the Google Groups "pqc-forum"
group.

To unsubscribe from this group and stop receiving emails from it, send an email to
pgc-forum+unsubscribeglist.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/
msgid/pgc-forum/tCx_tN5B90JIxZBZBKML1EC1iUhXxLtz0kcxSI3aPFqI5x_Ckml-
kn3Z4jBBK3jRvjA20KMulsi4tboMxeshgv74DCjIGoQZUUFBIRbhUAAAC%3D%40protonmail. com.

Page1of1

mailto:ska84@protonmail.com
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov

From: Maxime Bros <m.bros25000@gmail.com> via pgc-forum@list.nist.gov

To: pgc-forum@list.nist.gov

Subject: Re: [pgc-forum] Is there a proven lower bound on the fraction of codes with systematic forms?
Date: Wednesday, March 23, 2022 03:05:22 AM ET

Dear Sydney,

The number of square binary matrices n x n that are invertible is easy
to compute,

for the first row you have 2”"n-1 non singular vectors, for the second
2”n-2 because

you remove any linear combination of the vectors you already chose, etc.
The total is then \prod_i (2”n-2"i), i in {0..n-1}.

Once you have this number, you divide it by the total number of binary
square matrices,

that is to say 2”(n"2). You get something which is bounded from below by
0.288 (this is

proven and the proof is pretty easy).

I just computed the first values of this ratio with my computer:
n=4 = 0.3076

n=10 = 0.2891

n=20 = 0.2888

For rectangular matrices, you can count them in a similar way, and in
the end you get

a ratio which tends to the same value, for example for 25 x 50 binary
matrices, the ratio of invertible

ones is 0.2888 if my computations (done quickly on my computer this

morning) are correct.

To conclude, it is very likely that the 0.29 ratio you are mentioning
comes from these

computations; roughly speaking, in code-based cryptography we very often
consider that any

binary matrices is non singular with probability 0.29 as long as "it

looks random".

Page 1 of 2

mailto:m.bros25000@gmail.com
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov

Maxime Bros <m.bros25000@gmail.com>

I hope my answer was useful to you,

Sincerely,

Maxime Bros

(University of Limoges, France)

Le 23/03/2022 a 01:57, 'Sydney Antonov' via pqc-forum a écrit

> Is there a meaningful proven lower bound on either the fraction of

> Goppa codes with systematic forms (claimed to be approximately 29% by
> the Classic McEliece spec) or the fraction of binary matrices which

> are invertible (which would imply a close bound for Goppa codes if

> McEliece public keys are pseudorandom), for parameters relevant to

> Classic McEliece?

> Meaningful lower bounds could be probabilistically verified with high
> confidencex but this would complicate formal verification of Classic
> McEliece's one-way function's security reduction to the original McEliece

> cryptosystem.

> % Generate 100000 codes. If more than 28000 codes have systematic forms
> then with statistical significance less than 1 in a googol at least 25%
> of codes have systematic forms. The laptop I'm writing this email on

> could perform this computation within hours.

> Sydney

You received this message because you are subscribed to the Google Groups "pqc-forum"
group.

To unsubscribe from this group and stop receiving emails from it, send an email to
pgc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/
msgid/pqc-forum/5d4953b6-5288-1ed6-28b2-9229385cd33%40gmail. com.

Page 2 of 2

From: D. J. Bernstein <djb@cr.yp.to> via pgc-forum@list.nist.gov

To: pqc-forum@list.nist.gov

Subject: Re: [pgc-forum] Is there a proven lower bound on the fraction of codes with systematic
forms?

Date: Wednesday, March 23, 2022 07:54:32 AM ET

Attachments: smime.p7m

A uniform random dxd matrix over F_2 is invertible with probability
exactly (1-1/2)(1-1/4)(1-1/8) ... (1-1/2"d). See, e.g., Theorem 99 in

Dickson's 1901 book on linear groups:

https://archive.org/details/lineargroupswith@0ledi/page/n89/mode/2up

The probability is within 1/2"d of its limit as d—infinity. The limit

is

prod_{integers d > 1} (1-1/2"d)

sum_{integers k} (-1)"k 2"(-k(3k+1)/2)

binary 0.010010011110111000000100001111111101111100000000001000
000111111111111011111110000000000000010000000011111111
111111110111111111000000000000000000100000000001111111 ...

0.288788095086602421278899721929230780088911904840685784114741 ...

by Euler's pentagonal-number theorem.

Public keys in the original McEliece cryptosystem, with the usual
parameter choices, are commonly conjectured to be indistinguishable from
uniform random matrices of the same size. This indistinguishability
implies indistinguishability of the leading square matrix from uniform,
in turn implying that an invertibility test doesn't distinguish the
leading square matrix from uniform, i.e., that the invertibility chance

is indistinguishable from (1-1/2)(1-1/4)(1-1/8) ... (1-1/2"d).

Statistically pinning down the actual probability is a simple matter of
generating many McEliece matrices and seeing how often the leading
square matrix is invertible; or, for the reciprocal of the probability,

running keygen many times, as in the script below. (For experiments

Page 1 of 4

mailto:djb@cr.yp.to
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov

A uniform random dxd matrix over F_2 is invertible with probability

exactly (1-1/2)(1-1/4)(1-1/8)...(1-1/2^d). See, e.g., Theorem 99 in

Dickson's 1901 book on linear groups:

 https://archive.org/details/lineargroupswith00ledi/page/n89/mode/2up

The probability is within 1/2^d of its limit as d->infinity. The limit

is

 prod_{integers d >= 1} (1-1/2^d)

 = sum_{integers k} (-1)^k 2^(-k(3k+1)/2)

 = binary 0.010010011110111000000100001111111101111100000000001000

 000111111111111011111110000000000000010000000011111111

 111111110111111111000000000000000000100000000001111111...

 = 0.288788095086602421278899721929230780088911904840685784114741...

by Euler's pentagonal-number theorem.

Public keys in the original McEliece cryptosystem, with the usual

parameter choices, are commonly conjectured to be indistinguishable from

uniform random matrices of the same size. This indistinguishability

implies indistinguishability of the leading square matrix from uniform,

in turn implying that an invertibility test doesn't distinguish the

leading square matrix from uniform, i.e., that the invertibility chance

is indistinguishable from (1-1/2)(1-1/4)(1-1/8)...(1-1/2^d).

Statistically pinning down the actual probability is a simple matter of

generating many McEliece matrices and seeing how often the leading

square matrix is invertible; or, for the reciprocal of the probability,

running keygen many times, as in the script below. (For experiments

using deterministic RNG seeds, change "fast" to "known" in the script.)

An experiment generating 1000000 keys for mceliece6960119 used 3466938

matrices in total.

The limited statement that the probability is >=25% implies that there

is a "security difference of at most 2 bits" (to quote the Classic

McEliece submission) between systematic-form public keys and arbitrary

public keys. For formal verification, it's best to include this limited

statement as a hypothesis, since the statement is directly statistically

verifiable, rather than deriving the statement from the hypothesis of

public-key indistinguishability, which is overkill for the security

analysis.

---Dan (speaking for myself)

m=mceliece6960119

mkdir goppasystematic

cd goppasystematic

wget https://bench.cr.yp.to/supercop/supercop-20220213.tar.xz

tar -xf supercop-20220213.tar.xz

cd supercop-20220213

sed -i 1q okcompilers/c

: > okcompilers/cpp

chmod +t crypto_kem/$m/ref

touch crypto_kem/$m/used

for opi in crypto_kem/$m/*/

do

 python3 -c '

import sys

gaussstate = 0

print("long long numgauss = 0;")

print("long long numsystematic = 0;")

for line in sys.stdin:

 if gaussstate == 0 and line.find("gauss") >= 0:

 gaussstate = 1

 print("++numgauss;")

 sys.stdout.write(line)

 if gaussstate > 0:

 gaussstate += line.count("{")

 if line.count("}") > 0:

 gaussstate -= line.count("}")

 if gaussstate == 1:

 print("++numsystematic;")

 gaussstate = -1

 ' < "$opi/pk_gen.c" > "$opi/pk_gen.c.new" \

 && mv "$opi/pk_gen.c.new" "$opi/pk_gen.c"

done

./do-part init

./do-part keccak

./do-part crypto_sort int32

./do-part crypto_hash shake256

./do-part crypto_stream chacha20

./do-part crypto_rng

./do-part crypto_kem $m

(

 echo '#include <stdio.h>'

 echo '#include <stdlib.h>'

 echo '#include "crypto_kem_'"$m"'.h"'

 echo 'unsigned char pk[crypto_kem_mceliece6960119_PUBLICKEYBYTES];'

 echo 'unsigned char sk[crypto_kem_mceliece6960119_SECRETKEYBYTES];'

 echo 'void crypto_declassify(void *x,unsigned long long xlen)'

 echo '{'

 echo '}'

 echo 'void randombytes_callback(void *x,unsigned long long xlen)'

 echo '{'

 echo '}'

 echo 'extern long long numgauss,numsystematic;'

 echo 'int main(int argc,char **argv)'

 echo '{'

 echo ' for (long long loop = 0;loop < atoll(argv[1] ? argv[1] : "100");++loop)'

 echo ' crypto_kem_mceliece6960119_keypair(pk,sk);'

 echo ' printf("gauss %lld systematic %lld\n",numgauss,numsystematic);'

 echo ' return 0;'

 echo '}'

) > experiment.c

gcc -I bench/*/include/*/constbranchindex -o experiment experiment.c \

bench/*/lib/*/fastrandombytes.o \

bench/*/lib/*/kernelrandombytes.o \

bench/*/lib/*/libsupercop.a \

bench/*/lib/*/libkeccak.a

./experiment 10000

--

You received this message because you are subscribed to the Google Groups "pqc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/20220323115244.1576662.qmail%40cr.yp.to.

-----BEGIN PGP SIGNATURE-----

iQIzBAEBCAAdFiEE3QolqQXydru4e4ITsMANTjsOVFkFAmI7CgwACgkQsMANTjsO

VFmGDxAAhSmw9ZNjqY+TBz6HUgl12LC9e0uqiYjYk7p98kRowAzljhH8X/EQxVSa

+1P9bRTSND31pqSf42Ts1lifnqXAj1gz6mr4XIMjF6R8Yhylh4vPNb1B14ukkLpm

KkQOwzOR9GlYvvDeQnwdfOqqP+UR3TezXyMV7Ac+2r9QvZg9s5UvDXubbRbjpaXe

8ySeu1XgLVn/m8B9A6LoCqQS2sVWivQ9f/1WPHkAof+QFo8zfp16GTzpborzcYO1

JUgupDhGkDfQOpY+g1YBEYHFtS40s7/FPvcuWjuELzUeGDDtClVm3pRNjx4/yCNk

CxPjTsoYefEICcjnWl4hS30TGBQTb2uLqlrKmR61gadoRPV7R23wtS9EmP5DStxT

7LGn31PRvtiaczYczjw9oPj7q/f8acJU13Fa1mmcjnnsCV/V6t1WiKcbwJ7aMYD2

GeNnHWJi4i2imeezQmmph4I5UKhHDTsvhCAjTBLT2TSr5P39gjHhZVrlHvcN/odm

SOi3DZvngmd8wP4Itm9t/KQavCsHtXWWlIf03H3gG2oJzGvc7tgBqJji8TYgVwWX

l2zVayn298QR4CVVDf/khhg7e33wTsWQcd2+u+HFnVwirKkmHE5rY8boBt/1Kn4r

YMFREEgCj0Ci9VFaBDoT0pJyD7AfdUX5S1t/8qDRoyvpAIrFohg=

=Yb9g

-----END PGP SIGNATURE-----

D.]J. Bernstein <djb@cr.yp.to>

using deterministic RNG seeds, change "fast" to "known" in the script.)
An experiment generating 1000000 keys for mceliece6960119 used 3466938

matrices in total.

The limited statement that the probability is =25% implies that there
is a "security difference of at most 2 bits" (to quote the Classic
McEliece submission) between systematic-form public keys and arbitrary
public keys. For formal verification, it's best to include this limited
statement as a hypothesis, since the statement is directly statistically
verifiable, rather than deriving the statement from the hypothesis of
public-key indistinguishability, which is overkill for the security

analysis.

—Dan (speaking for myself)

m=mceliece6960119
mkdir goppasystematic
cd goppasystematic
wget https://bench.cr.yp.to/supercop/supercop-20220213.tar.xz
tar -xf supercop-20220213.tar.xz
cd supercop-20220213
sed -i 1q okcompilers/c
: > okcompilers/cpp
chmod +t crypto_kem/$m/ref
touch crypto_kem/$m/used
for opi in crypto_kem/$m/*/
do
python3 -c '
import sys
gaussstate = 0
print("long long numgauss = 0;")
print("long long numsystematic = 0;")
for line in sys.stdin:
if gaussstate = 0 and line.find("gauss") > 0:
gaussstate = 1

print("+numgauss;")

Page 2 of 4

D.]J. Bernstein <djb@cr.yp.to>

sys.stdout.write(line)
if gaussstate > 0:
gaussstate += line.count("{")
if line.count("}") > 0:
gaussstate -= line.count("}")
if gaussstate = 1:
print("+numsystematic;")
gaussstate = -1
" < "$opi/pk_gen.c" > "$opi/pk_gen.c.new" \
& mv "$opi/pk_gen.c.new" "$opi/pk_gen.c"
done
./do-part init
./do-part keccak
./do-part crypto_sort int32
./do-part crypto_hash shake256
./do-part crypto_stream chacha20
./do-part crypto_rng
./do-part crypto_kem $m

echo '#include <stdio.h>'

echo '#include <stdlib.h>'

echo '#include "crypto_kem_'"$m"'.h"'

echo 'unsigned char pk[crypto_kem_mceliece6960119_PUBLICKEYBYTES];'
echo 'unsigned char sk[crypto_kem_mceliece6960119_SECRETKEYBYTES];'
echo 'void crypto_declassify(void xx,unsigned long long xlen)'

echo '{'

echo '}'

echo 'void randombytes_callback(void *x,unsigned long long xlen)'
echo '{'

echo '}'

echo 'extern long long numgauss,numsystematic;'

echo 'int main(int argc,char #*xargv)'

echo '{'

echo ' for (long long loop = 0;loop < atoll(argv[1] ? argv[1] : "100");++loop)'

echo ' crypto_kem_mceliece6960119_keypair(pk,sk);"
echo ' printf("gauss %11d systematic %11d\n",numgauss,numsystematic);"'
echo ' return 0;'

Page 3 of 4

D.]J. Bernstein <djb@cr.yp.to>

echo '}'
) > experiment.c
gcc -I bench/*/include/*/constbranchindex -o experiment experiment.c \
bench/*/1ib/*/fastrandombytes.o \
bench/*/1ib/*/kernelrandombytes.o \
bench/*/1ib/*/1libsupercop.a \
bench/x/1lib/x/1libkeccak.a
./experiment 10000

You received this message because you are subscribed to the Google Groups "pqc-forum"
group.

To unsubscribe from this group and stop receiving emails from it, send an email to
pgc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/
msgid/pqc-forum/20220323115244.1576662.qmail%40cr.yp.to.

Page 4 of 4

	1. 2022-03-22 20:58- Sydney Antonov
	2. 2022-03-23 03:05- Maxime Bros
	3. 2022-03-23 07:54- D. J. Bernstein

